Вибрация и пляска проводов воздушных ЛЭП: что это такое, методы борьбы

Вибрация и пляска проводов на воздушных линиях электропередачи

При изучении работы проводов воздушных линий в естественных условиях, помимо обычных изменений, вызываемых в работе проводов проводов действием гололеда, ветра и температуры, представляет интерес явления вибраций и пляски проводов.

Вибрация проводов в вертикальной плоскости наблюдается при малых скоростях ветра и заключается в появлении в проводах продольных (стоячих) и преимущественно блуждающих волн с амплитудой до 50 мм и частотой 5 – 50 гц. Следствием вибрации являются изломы проволок проводов, самоотвертывание болтов опор, расстройство частей арматуры гирлянд изоляторов и т. п.

Для борьбы с вибрацией применяют усиление проводов при помощи обмотки их в местах закрепления, автовибрационные зажимы и глушители (демпферы).

В воздушных линиях встречается, хотя и более редко, другое, менее изученное явление — пляска проводов, т. е. колебание проводов с большой амплитудой, вызывающее схлестывание проводов различных фаз, а следовательно, и выпадение линии из работы.

При обтекании проводов потоком воздуха, направленным поперек оси линии или под некоторым углом к этой оси, с подветренной стороны провода возникают завихрения. Периодически происходят отрывы ветра от провода и образование вихрей противоположного направления.

Отрыв вихря в нижней части вызывает появление кругового потока с подветренной стороны, причем скорость потока v в точке А становится больше, чем в точке В. В результате появляется вертикальная составляющая давления ветра.

При совпадении частоты образования вихрей с одной из частот собственных колебании натянутого провода последний начинает колебаться в вертикальной плоскости. При этом одни точки больше всего отклоняются от положения равновесия, образуя пучность волны, а другие — остаются на месте, образуя так называемые узлы. В узлах происходят только угловые перемещения провода.

Такие колебания провода с амплитудой, не превышающей 0,005 длины полуволны или двух диаметров провода, называются вибрацией .

Рис 1. Образование вихря за проводом

Вибрация проводов возникает при скоростях ветра 0,6—0,8 м/с; при увеличении скорости ветра увеличиваются частота вибрации и число волн в пролете, при скорости ветра свыше 5—8 м/с амплитуды вибрации настолько малы, что не опасны для провода.

Опыт эксплуатации показывает, что вибрация проводов наблюдается чаще всего на линиях, проходящих по открытой и ровной местности. На участках линий в лесной и пересеченной местности продолжительность и интенсивность вибраций значительно меньше.

Вибрация проводов наблюдается, как правило, в пролетах длиной более 120 м и усиливается с увеличением пролетов. Особенно опасна вибрация на переходах через реки и водные пространства с пролетами длиной более 500 м.

Опасность вибрации заключается в обрывах отдельных проволок на участках их выхода из зажимов. Эти обрывы происходят вследствие того, что переменные напряжения от периодических изгибов проволок в результате вибрации накладываются на основные растягивающие напряжения в подвешенном проводе. Если последние напряжения невелики, то суммарные напряжения не достигают предела, при котором происходит разрушение проволок от усталости.

Рис. 2. Волны вибрации на проводе в пролете

На основании наблюдений и исследований установлено, что опасность разрушения проводов зависит от так называемого средне-эксплуатационного напряжения (напряжения при среднегодовой температуре и отсутствии дополнительных нагрузок).

Регистратор вибраций ALCOA “SCOLAR III”, смонтированный на спиральном поддерживающем зажиме

Методы борьбы с вибрацией проводов

Согласно ПУЭ одиночные алюминиевые и сталеалюминиевые провода сечением до 95 мм2 в пролетах длиной более 80 м, сечением 120 – 240 мм2 в пролетах более 100 м, сечением 300 мм2 и более в пролетах более 120 м, стальные провода и тросы всех сечений в пролетах более 120 м должны быть защищены от вибрации, если напряжение при среднегодовой температуре превышает: 3,5 даН/мм2 (кгс/мм2) в алюминиевых проводах, 4,0 даН/мм2 в сталеалюминиевых проводах, 18,0 даН/мм2 в стальных проводах и тросах.

В пролетах меньше указанных выше защита от вибрации не требуется. Защита от вибрации не нужна также на линиях с расщеплением фазы на два провода, если напряжение при среднегодовой температуре не превышает 4,0 даН/мм2 в алюминиевых и, 4,5 даН/мм2 в сталеалюминиевых проводах.

Фаза с расщеплением на три и четыре провода, как правило, не требует защиты от вибрации. Участки любых линий, защищенные от поперечных ветров, не подлежат защите от вибрации. На больших переходах рек и водных пространств защита необходима независимо от напряжения в проводах.

Как правило, снижение напряжений в проводах линий до значений, при которых не требуется защиты от вибрации, экономически невыгодно. Поэтому на линиях напряжением 35 – 330 кВ обычно устанавливаются виброгасители, выполненные в виде двух грузов, подвешенных на стальном тросе .

Виброгасители поглощают энергию вибрирующих проводов и уменьшают амплитуду вибрации около зажимов. Виброгасители должны быть установлены на определенных расстояниях от зажимов, определяемых в зависимости от марки и напряжения провода.

На ряде линий для защиты от вибрации применяются армирующие прутки, выполненные из того же материала, что и провод, и наматываемые на провод в месте его закрепления в зажиме на длине 1,5 – 3,0 м.

Диаметр прутков уменьшается в обе стороны от середины зажима. Армирующие прутки увеличивают жесткость провода и уменьшают вероятность его повреждения от вибрации. Однако наиболее эффективным средством борьбы с вибрацией являются виброгасители.

Для защиты от вибрации одиночных сталеалюминиевых проводов сечением 25—70 мм2 и алюминиевых сечением до 95 мм2 рекомендуются гасители петлевого типа (демпфирующие петли) , подвешиваемые под проводом (под поддерживающим зажимом) в виде петли длиной 1,0—1,35 м из провода того же сечения.

В зарубежной практике петлевые гасители из одной или нескольких последовательных петель применяются также для защиты проводов больших сечений, в том числе и проводов на больших переходах.

Пляска проводов, так же как и вибрация, возбуждается ветром, но отличается от вибрации большой амплитудой, достигающей 12 – 14 м, и большой длиной волны. На линиях с одиночными проводами чаще всего наблюдается пляска с одной волной, т. е. с двумя полуволнами в пролете (рис. 4), на линиях с расщепленными проводами — с одной полуволной в пролете.

В плоскости, перпендикулярной оси линии, провод движется при пляске по вытянутому эллипсу, большая ось которого вертикальна или отклонена под небольшим углом (до 10 – 20°) от вертикали.

Диаметры эллипса зависят от стрелы провеса: при пляске с одной полуволной в пролете большой диаметр эллипса может достигать 60 – 90% стрелы провеса, при пляске с двумя полуволнами — 30 – 45% стрелы провеса. Малый диаметр эллипса обычно составляет 10 – 50% длины большого диаметра.

Как правило, пляска проводов наблюдается при гололеде. Гололед отлагается на проводах преимущественно с подветренной стороны, вследствие чего провод получает неправильную форму.

При воздействии ветра на провод с односторонним гололедом скорость воздушного потока в верхней части увеличивается, а давление уменьшается. В результате возникает подъемная сила Vy, вызывающая пляску провода.

Опасность пляски заключается в том, что колебания проводов отдельных фаз, а также проводов и тросов происходят несинхронно; часто наблюдаются случаи, когда провода перемещаются в противоположных направлениях и сближаются или даже схлестываются.

При этом происходят электрические разряды, вызывающие оплавление отдельных проволок, а иногда и обрывы проводов. Наблюдались также случаи, когда провода линий 500 кВ поднимались до уровня тросов и схлестывались с ними.

Рис. 4: а – волны пляски на проводе в пролете, б – провод, покрытый гололедом, в воздушном потоке друг с другом.

Удовлетворительные результаты эксплуатации опытных линий с гасителями пляски пока недостаточны для уменьшения расстояний между проводами.

На некоторых зарубежных линиях с недостаточными расстояниями между проводами разных фаз установлены изолирующие распорки, исключающие возможность схлестывания проводов при пляске.

Проблемы повышенной вибрации и «пляски» проводов и грозотросов в Северном регионе и пути их решения

Масштабное освоение Северных регионов Тюменской области и массовое строительство ВЛ велось в 70-80 годы, когда регион был малоизучен, в год строилось и вводилось около тысячи километров воздушных линий. На стадии проектирования ВЛ не было учтено влияние климатических и геологических условий в период эксплуатации ВЛ из-за их слабой изученности, в связи с чем, проектные решения по Северному региону были идентичны решениям для юга Тюменской области. При проектировании, а потом и в строительстве использовался один и тот же тип опор, фундаментов, такие же или даже большие длины пролетов, в связи с малой плотностью населения и труднодоступностью территории, аналогичные стрелы провеса, закладывалось повышенное тяжение (30% от разрывного усилия в проводе вместо 25% используемой в зарубежной практике), марка проводов, тросов и арматура также были типовыми.

По проекту провода и тросы для районов Крайнего Севера рассчитывались для следующих климатических условий: температура наружного воздуха -55-65°C, ветер и гололед отсутствуют. Не было учтено фактическое влияние совокупности ветровых нагрузок, наличие гололедно-изморозевых отложений, возникающих на проводах и тросах по причине вымораживания обширных обводненных и заболоченных территорий, низких температур или их перепадов. В результате в период эксплуатации ВЛ возникли ряд проблем, таких как повышенная вибрация проводов и тросов, «пляска» проводов и тросов, пучение свайных фундаментов, низкая грозоупорность ВЛ.

Вибрация проводов и тросов

Причиной вибрации проводов являются чередующие срывы вихрей воздуха, создаваемых ветром с верхней и нижней стороны провода. Это явление создает условия для небаланса переменного давления, вызывающего движение провода вверх и вниз под прямым углом к направлению потока воздуха

Наиболее опасная вибрация возникает от воздействия на провод поперечно (или под углом) направленного аэродинамического потока со скоростью от 0,6 до 7 м/с (вызывает низкочастотные колебания с частотой от 3 до 10 Гц), так как при более высоких скоростях ветра поток становится турбулентным и энергия ветра, поступающая к проводу, значительно снижается. К тому же самодемпфирование провода возрастает за счет увеличения частоты колебаний провода.

Наиболее опасна вибрация проводов при отложении изморози. Изморозь обычно откладывается при очень спокойном воздухе, сохраняя цилиндрическую форму провода, но с существенным увеличением его диаметра. Увеличение диаметра провода происходит без заметного изменения его демпфирования, поэтому ветер той же скорости будет вызывать вибрацию с более низкой частотой. При таких условиях гасители в пределах своего нормального рабочего диапазона не справляются с повышенной воспринимаемой ветровой энергией. Со временем это приводит к усталостному разрушению провода, повреждению арматуры, аварийному отключению ВЛ.

Без должной защиты вопрос повреждения проводов и тросов от вибрации это только вопрос времени. Из опыта эксплуатации срок службы проводов и грозотросов в Северном регионе составляет 12-15 лет. Повреждение проводов и грозотросов происходит в местах подвески и их соединения (поддерживающие и натяжные зажимы, соединители типа СОАС, САС), так как эти места являются концентраторами напряжений (по аналогии с курсом сопротивления материалов — местами заделки), а так же в тех местах, где разрушены гасители вибрации.

На следующих фотографиях представлены наиболее типичные повреждения элементов ВЛ, происходящие при повышенной вибрации, при многократном воздействии знакопеременных нагрузок малой амплитуды.

Опыт эксплуатации показывал, что типовые гасители вибрации типа ГВН, ГПГ, ГПС в т.ч. установка двойных гасителей, не эффективны в борьбе с повышенной вибрацией. Все разрушения имели место вблизи поддерживающих зажимов, гасителей вибрации, а иногда в точках выхода провода из соединительных зажимов. Именно в этих местах знакопеременные механические напряжения от вибрации имеют наибольшую величину.

За зимний период 1998-1999 гг. в Северных ЭС имело место около 60 отказов ВЛ из-за обрыва проводов ВЛ различных классов напряжения. Подавляющее количество аварий было зафиксировано при понижениях температуры (ниже -40°С) и, соответственно, при повышенных тяжениях. Осмотры показали, что все разрушения произошли в местах, где провод был уже ослаблен усталостными разрушениями от вибрации, как в алюминиевых так и в стальных повивах.

Для решения проблемы в ОАО «Тюменьэнерго» начиная с 1999 года ведется работа по усилению проводов и грозозащитных тросов с использованием защитных спиральных протекторов типа ПЗС, разработанных в ЗАО «Электросетьстройпроект», навиваемых на провод в поддерживающем зажиме, далее ПЗС на соединители типа СОАС, САС. С разработкой в 2002 году многочастотных гасителей вибрации типа ГВ («пешка»), начато их опытное применение в филиале «Северные ЭС».

Дальнейшим логическим развитием удачной идеи спиральной арматуры, стало создание ЗАО «Электросетьстройпроект» полного спектра спиральной арматуры (поддерживающей, натяжной, соединительной, шлейфовой и пр.), которая незамедлительно стала применяться при реконструкциях и ремонтах ВЛ в ОАО «Тюменьэнерго».

С течением времени, предпринимаемые ОАО «Тюменьэнерго» усилия, позволили добиться качественного перелома в борьбе с вибрационным износом проводов и грозозащитных тросов.

Достигнута устойчивая тенденция к снижению повреждений проводов и грозотросов по причине вибрационного износа, что позволило практически полностью исключить аварийные отключения ВЛ по этой причине и перевести проблему из плоскости авральных ремонтов в плоскость планового техобслуживания.

Несколькими годами позже, подтверждая правильность выбранного ОАО «Тюменьэнерго» направления, выйдет информационное письмо ОАО «ФСК ЕЭС» №ЧА/29/173 от 28.12.07г., запрещающее применение 2-х частотных гасителей вибрации старого образца при ТПиР, КР и при новом строительстве ВЛ.

Цитата: «…Запрет связан с низкой эффективностью и недостаточной эксплуатационной надежностью, как всей конструкции гасителя вибрации, так и отдельных составляющих ее элементов. Низкая эффективность объясняется малым энергопоглощением в демпферном тросе, частотные характеристики гашения вибрации имеют две узкие зоны эффективного поглощения. Это приводит к невозможности подавления вибрации во всем спектре возникающих частот колебаний провода и его фактической незащищенности в широких диапазонах частот…»

На основании данного письма, с 2008 года ОАО «Тюменьэнерго» полностью официально отказалось от применения на всех своих объектах гасителей вибрации старого образца в пользу многочастотных гасителей вибрации типа ГВ, ГВП, ГВУ.

«Пляска» проводов и тросов

Несомненно, что возникновению «пляски» в Северном регионе Тюменской области способствует влияние ветровых нагрузок при отложениях на проводах и тросах изморози («куржака»). Возникновение изморозевых отложений на проводах и тросах ВЛ происходит большей частью не по причине налипания на них атмосферных осадков, а в результате вымораживания влагонасыщенной почвы (промерзания болот) и воздуха. Отложение изморози цилиндрической формы обычно сопровождается «пляской» проводов в виде стоячих волн с наиболее опасным видом колебаний с одной или двумя полуволнами или низкочастотной вибрацией. «Пляска» является одной из наиболее опасных разновидностей колебаний проводов ВЛ, при этом известны случаи, когда «пляска» происходит и без изморозевых отложений или гололеда, например, при косых ветрах, направленных под острым углом к трассе ВЛ.

Читайте также:  Правила ПУЭ, которые нарушают чаще всего и ответсвенность за нарушения

«Пляской» проводов называются вызываемые ветром устойчивые периодические низкочастотные колебания, образующие стоячие волны с числом полуволн от одной до двадцати. «Пляска» является результатом воздействия на провод периодически изменяющейся подъемной силы, возникающей при крутильных перемещениях провода при его обтекании равномерным и поперечно направленным воздушным потоком скоростью от 6 до 25 м/с (из теории).

Явление «пляски» проводов и грозотросов в Северных ЭС наблюдается в большом диапазоне климатических условий:
• температура воздуха от – 2°С до –42°С;
• скорость ветра от 3 м/сек до 25 м/сек;
• гололедоизморозевые отложения.

Из опыта эксплуатации, наиболее опасна «пляска» проводов при:
• температуре воздуха от –30°С и ниже;
• скорости ветра 5-12 м/сек.

При таких условиях амплитуда колебаний проводов и тросов достигает величин от 1 метра до значений, равных стреле провеса с частотой от 0,2 до 2 Гц.

На провода и арматуру действует огромная динамическая ударная нагрузка, передаваемая от ветра.

Повреждаемость элементов ВЛ динамическими нагрузками при пониженных температурах, усиливается из-за хладноломкости арматуры и провода в целом.

Анализ «пляски проводов на ВЛ 35-110кВ за 2009г. показывает, что до 40% случаев «пляски» приводит к устойчивому нарушению работы ВЛ (НАПВ) на время от нескольких минут до нескольких часов, до 10% случаев к повреждению элементов ВЛ, требующих срочного ремонта, в 50% случаев нарушения ограничиваются кратковременными отключениями (УАПВ).

В процессе «пляски» провода и линейная арматура испытывает действия значительных циклических (пульсирующих) поперечных и продольных нагрузок, величина которых достигает 1–4 т и более. Следствием длительного воздействия таких нагрузок является разрушение подвесной и сцепной арматуры, повреждения междуфазных распорок, защитной арматуры, повреждения и обрывы проводов и грозозащитных тросов.

В первую очередь от циклических нагрузок разрушаются узлы, имеющие жесткую конструкцию и несущие большую нагрузку.

Способы борьбы с пляской проводов и тросов вытекают из физики данного процесса, описанной во многих пособиях.

Во время колебаний в воздушном потоке на провод воздействуют аэродинамические силы:
• аэродинамическая сила от изменения угла атаки при поступательных колебаниях пропорциональна скорости набегающего потока ветра;
• аэродинамическая сила от крутильных колебаний пропорциональна квадрату скорости набегающего потока ветра.

Отсюда возникает важный вывод о крутильных колебаниях, как об основном рычаге воздействия на «пляску» проводов. Аэродинамические силы, возникающие при «пляске» от крутильных колебаний, являются преобладающими по величине, и они являются решающими в количественной оценке «пляски» проводов, тем самым задавая одно из направлений в борьбе с пляской.

Борьба с «пляской» проводов и ее последствиями должна вестись как при помощи активных средств, так и пассивными методами за счет предотвращения сближения (схлестывания) проводов путем увеличения расстояния между ними или расположением проводов в горизонталь, либо постановкой межфазных изолирующих распорок (из теории).

Для борьбы с «пляской» проводов активными средствами, с целью наработки практического опыта эксплуатации различных типов гасителей «пляски», в филиале ОАО «Тюменьэнерго» Северные электрические сети начиная с 2003г. было установлено несколько типов гасителей «пляски»: разработанных ОАО «ВНИИЭ», принцип работы которых направлен на препятствование и уменьшение крутильных колебаний провода.

• ВЛ 110кВ «Ямбург-ЯГТЭС» отп.«ЯГП-2» пр.№1-14: МП-120-А, ГП-120 — 234 шт;
• ВЛ 110кВ «Ямбург-ЯГП-6» пр.№7-8: МП-120-А и ГП-120 — 9 шт.

ЗАО Научно-технический центр «Электросети»(г.Москва) разработал в 2008 году по заказу ОАО «Тюменьэнерго» математическую модель для расчета гасителей «пляски» спирального типа и систему измерения колебаний проводов, провел лабораторные испытания гасителей на стойкость к возникновению циклической продольной нагрузки и в ноябре 2008г. выполнил поставку новых экспериментальных гасителей пляски спирального типа: ГПС-15,2-01- 1П («бабочка») и ГПС-15,2-02-1П («полубабочка»), которые были установлены на линиях Ямбургского РЭСа. Сегодня новые гасители «пляски» и система измерения колебаний проводов проходят эксплуатационные испытания с целью сбора экспериментальных данных для дальнейшего совершенствования и развития идеи спиральных гасителей «пляски», а также создания новых образцов гасителей «пляски».

На ВЛ 110кВ «ЯГП-6-ЯГТЭС» отп.«ЯГП-2» ф.«С» в пролетах с №1-14 установлены: ГПС-15,2-01- 1П — 42 шт;
На ВЛ 110кВ «ЯГП-6-ЯГТЭС» отп.«ЯГП-2» ф.«А» в пролетах с №1-14 установлены: ГПС-15,2-02- 1П — 42 шт;

Для борьбы с «пляской» проводов пассивными средствами впервые в практике ОАО «Тюменьэнерго» в 2008г. применены межфазные изолирующие распорки, изготовленные предприятием ЗАО «Энергия+21» г. Южноуральск. Данные распорки установлены на линиях Ямбургского РЭСа в наиболее узких местах, где в 2006, 2007 и в начале 2008 года происходили отключения ВЛ именно по причине «пляски» проводов. Межфазные распорки применяются для удержания проектного расстояния между проводами фаз, проводами и грозозащитными тросами во время «пляски». Такая система призвана снижать амплитуду «пляски» проводов и связанные с нею динамические нагрузки на элементы ВЛ.

В 2008 году в Северных электрических сетях установлено:
ВЛ 110кВ «ЯГП-6-ЯГТЭС» пр.№206-207 — РМИ-110 — 4 шт.
ВЛ 110кВ «Ямбург-ЯГТЭС» пр.№114-116 — РМИ-110 — 8 шт.
ВЛ 110кВ «Ямбург-ЯГП-1В» пр.№75-76 — РМИ-110 — 2 шт.
ВЛ 110кВ «Ямбург-ЯГП-1В» отп.«ЯГП-1» пр.№2-3 — РМИ-110 — 2 шт.
ВЛ 110кВ «Ямбург-ЯГП-1» пр. №6-7 — РМИ-110 — 2 шт.

Мировой опыт показывает, что проблема такой разновидности колебаний проводов как «пляска», до сих пор до конца не изучена и не побеждена, хотя большинство причин ее вызывающих выявлено и описано. Тем не менее полностью избавить от проблемы «пляски» проводов на эксплуатируемых ВЛ сейчас не представляется возможным. В связи с этим, на сегодня основным направлением работы в данном направлении ОАО «Тюменьэнерго» считает отыскание способов уменьшения амплитуды и частоты «пляски» проводов до безопасных значений. Наряду с активными и пассивными способами борьбы с «пляской» проводов на эксплуатируемых ВЛ, описанных в докладе, ОАО «Тюменьэнерго» использует приемы упреждения этого явления еще на стадии проектирования, а именно, для ВЛ проектируемых в регионах с частой и интенсивной «пляской», помимо всех предусмотренных НТД требований, дополнительно закладывается уменьшенная длина пролетов и пониженное тяжение. Так например, для проектируемой ВЛ 220 кВ «Надым-Салехард» средняя длина пролета не превышает 300-320 м, в то время как в при стандартном подходе длина пролета достигала бы 400 и более метров.

Кроме того, в настоящее время в рамках НИОКР ведется работа с ЗАО «Электросетьстройпроект» (ЗАО «ЭССП»), по доработке существующих (типа ГПС «бабочка», «полубабочка») гасителей «пляски» или разработке новых конструкций гасителей «пляски». В декабре планируется установка экспериментальной партии ограничителей гололедообразования Фирмы «ОРГРЭС».

Нашли ошибку? Выделите и нажмите Ctrl + Enter

Проектирование механической части ВЛ – Вибрация, пляска

Содержание материала

Возникновение вибрации и пляски проводов

Все вышерассмотренные нагрузки от гололеда и ветра принято называть статическими, но при некоторых условиях, ветер может вызывать колебательные движения проводов и тросов, создающие динамические усилия. К таким процессам относят вибрацию и пляску проводов [3, 6, 11].

Вибрация проводов

Вибрацией провода называют периодические колебания провода в вертикальной плоскости с большой частотой и малой амплитудой. Такие колебания обычно наблюдаются при относительно слабом ветре – от 0,5-0,8 до 3 -8 м/с и отсутствии на проводах гололедно-изморозевых отложений. Направление ветра при вибрации по отношению к оси линии может быть различным. По данным наблюдений, устойчивая вибрация бывает при направлениях ветра под углом 45 – 90° к оси линии. Опыт эксплуатации показывает, что вибрации наиболее подвержены провода, расположенные высоко над землей и в открытой ровной местности, когда равномерное движение воздушного потока не нарушается рельефом или наземными препятствиями. Кроме того, вероятность возникновения вибрации увеличивается с увеличением длины пролёта (для пролётов более 120 м). Особенно опасна вибрация проводов при переходах через реки и водные пространства с пролётами более 500 м. Опасность вибрации заключается в обрывах отдельных проволок на участках их выходов из зажимов, однако разрушение наступает лишь в том случае, когда результирующие механические напряжения в проводе (статические и динамические) оказываются больше предела усталости металла. Вибрацию можно сгладить двумя путями: без специальных мер защиты и с применением специальных средств.

Для исключения опасности вибрации без специальных мер защиты необходимо соблюсти условия, при которых величина напряжения в проводе при вибрации не превзойдет предела усталости материала в проводе при длительной работе линии электропередачи при среднеэксплуатационных условиях.
Для защиты проводов от повреждений, вызываемых вибрацией, существуют различные средства, которые применяют наряду с ограничением напряжения. Основные способы борьбы следующие:
Усиление провода в местах подвески в поддерживающих зажимах путем обмотки армирующими прутками. Обмотанный такими прутками провод получает конусообразную форму и его сопротивление изгибу увеличивается по мере приближения к зажиму.
Установка на проводах гасителей вибрации (рис. 2.8).

Рис. 2.8. Виброгасители
Виброгаситель обладает свойством противодействовать колебаниям, вызываемым вибрацией и уменьшать амплитуду колебаний до безопасных пределов, поэтому данный способ защиты является наиболее эффективным. Виброгасители устанавливают на проводах с двух концов пролёта. В пролётах больших переходов в случае подвески провода с применением роликовых зажимов устанавливают виброгасители особой конструкции (гасители сбрасывающегося типа), которые в случае
обрыва провода сбрасываются и дают возможность проводу свободно проскользнуть по роликам.
Установка гасителей петлевого типа – демпфирующих петель, которые подвешиваются под зажимом в виде петли длиной 1,0 – 1,35 м и изготавливаются из провода того же сечения.

Пляска проводов

Пляска проводов является вторым опасным для воздушных линий электропередачи явлением, связанным с колебательным процессом. Пляска проводов возникает при сочетании порывистого ветра со скоростью 5 – 20 м/с под углом 30 – 70° к оси линии. В отличие от вибрации пляска проводов характеризуется малой частотой, но большой амплитудой колебаний.
Пляска проводов приводит к схлестыванию проводов, вызывает значительные динамические усилия в линейной арматуре и в траверсах опор, иногда наблюдается повреждение линейной арматуры, изоляторов, перекос или сброс распорок, а также заброс подвесных гирлянд на траверсы. Последствия пляски проводов могут вывести воздушную линию из работы на длительное время.
Меры борьбы с пляской могут быть направлены на ее ослабление или предотвращение – активные меры, а также на уменьшение вероятности схестывания проводов или касания проводами частей опор – пассивные меры.
К активным мерам относятся устройства, способствующие успокоению колебаний (установка демпферов) и плавка гололеда электрическим током.
К пассивным мерам относится конструктивное выполнение опор с большим разносом проводов по вертикали, с увеличенным горизонтальным смещением проводов разных ярусов.

Вибрация и пляска проводов на воздушных ЛЭП

Для передачи электрического тока на большие расстояния используются воздушные и кабельные линии высокого напряжения. Протяженность таких линий электропередач может достигать нескольких километров, на которых установлены высоковольтные опоры для отделения проводов от земли. В местах крепления обеспечивается достаточно жесткая фиксация, но в пролетах опор провода могут свободно колебаться. При воздействии определенных внешних факторов на воздушных линиях возникает вибрация и пляска проводов, способная как повредить сами устройства, так и нарушить нормальный режим работы энергосистемы.

Определение

Под вибрацией следует понимать перемещения провода в вертикальной плоскости, которые характеризуются сравнительно небольшой амплитудой движения – в пределах нескольких сантиметров, но не более диаметра провода для двойной амплитуды или 0,005 от длины волны вибрации. При этом частота таких перемещений в вертикальной плоскости может достигать от 3 до 150 Гц. Наибольший вред интенсивной вибрации – быстрое изнашивание металла в местах частого перегиба.

Как видите на рисунке 1, в точке 1 происходит частый излом, который приводит к усталости металла с дальнейшим отпуском, что и обуславливает потерю жесткости проводов, и обрывы отдельных жил.

Под пляской проводов подразумевается вертикальное перемещение с частотой от 0,2 до 2Гц. Амплитуда колебаний во время пляски может достигать от 0,3 до 5м, а при расстоянии между опорами в 200 — 500м амплитуда пляски достигает 10 – 14м. Такому явлению могут подвергаться любые ЛЭП и их элементы (фазные провода, грозозащитные троса и т.д.). Но в низковольтных линиях до 6-10кВ за счет малого расстояния между опорами явление незначительно.

Отличие вибрации от пляски проводов.

Физически и вибрация, и пляска проводов представляют собой перемещение в вертикальной плоскости. Их основное отличие в размере возникающей при колебаниях волны и в ее частоте. Так вибрация характеризуется значительно большей частотой колебания проводов, в сравнении с пляской. Но вибрация имеет несоизмеримо меньшую амплитуду, чем пляска, благодаря чему она не несет такой угрозы для линии.

Причины возникновения

Все причины возникновения и пляски, и вибрации можно разделить на:

  • воздействие воздушного потока – наиболее частая и опасная причина, поскольку имеет продолжительное воздействие и приводит к нарастанию амплитуды и частоты;
  • коммутационные процессы – при подаче напряжения в сеть или при подключении нагрузки переходные процессы обуславливают скачек электромагнитного поля, приводящего провода в движение;
  • механическая нагрузка – обуславливается всевозможными ударами или движением предметов, к примеру, токоприемником электроподвижного состава по контактной сети.

Следует отметить, что движение линий во время переходного процесса носит разовый характер, и дальнейшие собственные колебания постепенно угасают. То же происходит и с механической нагрузкой, в отличии от воздуха, который не только может дуть в течении продолжительного времени, но и менять свой угол и интенсивность. Поэтому наиболее значимой причиной для всех типов линий является воздушный поток.

Возникновение вибрации и пляски от воздушного потока

Воздействие ветра происходит при любом направлении потока, как в горизонтальной плоскости, так и под каким-то углом. Основной причиной колебаний является неравномерная скорость, с которой воздух огибает провод, из-за чего в верхней и нижней точке возникает разность давления.

Читайте также:  Стабилизатор напряжения: устройство, принцип работы, назначение

Рис. 2: воздействие воздуха на провод

Посмотрите на рисунок 2, здесь приведен пример, когда воздух огибает окружность из точки А в точку Б. Воздушный поток в этом месте закручивается, и возникают завихрения. Это приводит к возникновению сил, давящих не только со стороны ветра, но и в вертикальной плоскости. В нижней точке давление становится меньшим, чем в верхней и при совпадении вихрей с собственными колебаниями возникают горизонтальные перемещения провода.

Следует отметить, что такая ситуация возможна лишь при относительно небольших скоростях воздушных потоков – от 0,5 до 7м/с, так как при увеличении скорости потоки движутся иначе. Но прекращение ветра, увы, не означает окончание вибрации, так как из-за большой протяженности линий в них возникают собственные колебания, которые уже не требуют поддержания, а продолжаются за счет резонансных явлений. И, если вибрация носит незаметный характер, то при пляске, волны станут куда более значительными и опасными.

Физика процесса

Во время пляски в местах подвешивания к опоре линия крепится жестко, поэтому в таких узлах не возникает никаких колебаний. А в местах провеса проводов амплитуда колебаний становиться максимальной.

Рис. 3: функция колебания проводов в пролете

При достижении максимума пляски в пиковой точке провиса возникает, так называемая, стоячая волна. Данное явление характеризуется величиной амплитуды кратной или равной длине пролета. Наиболее опасные перемещения возникают на скоростях в 0,6 – 0,8 м/с, а при нарастании скорости воздушного потока более 5 – 8 м/с динамические нагрузки слишком малы из-за незначительной амплитуды.

Но, помимо амплитуды вибрации вторым по значимости параметром является их частота, которую можно определить по формуле:

f = (0,185×V)/d, где

  • f – это частота колебаний;
  • 0,185 – постоянная Струхаля;
  • V – скорость аэродинамического потока;
  • d – диаметр провода.

Как видите из формулы, чем меньшего сечения торсы применяются в ЛЭП, тем с большей частотой они будут колебаться. На практике, частота колебаний обуславливает и интенсивность пляски, из-за чего диапазон наиболее опасных частот для линии составляет от 0,2 до 2 Гц.

Следует отметить, что ситуация может значительно ухудшаться за счет погодных факторов, которые влияют не только на воздушные потоки, но и на состояние провода. Наиболее значимым из них является гололед, так как он возникает с подветренной стороны и характеризуется искажением формы провода. При этом вибрирующие провода подвергаются воздействию поднимающей силы Vy, приложенной к отложениям гололеда. Она дополнительно усугубляет ситуацию при вибрации и пляске.

Рис. 4: влияние гололеда на колебания

Провод совершает не только горизонтальные колебания, но и вращательные движения, а в узлах и точках фиксации из-за обледенения происходит повреждение металла.

Опасность

Пляска и вибрация имеют схожую природу, но отличаются по интенсивности. Тем не менее, оба явления могут нести такие виды опасности для ЛЭП:

  • Распушивание — повреждение проводов, при котором медные, алюминиевые или стальные тросы теряют утяжку и механическую прочность;
  • Перекрытие воздушного промежутка – в случае движения смежных фаз с различной амплитудой, волны могут приближаться достаточно близко друг к другу, из-за чего произойдет пробой и возникновение дуги;
  • Схлестывание проводов – являются более опасным развитием предыдущей ситуации, когда параллельные линии касаются друг друга и создают электрический контакт с протеканием токов короткого замыкания и оплавлением металла;
  • Обрыв проводов – может возникать как результат короткого замыкания, так и множественных обрывов отдельных проволок, разрушенных многократными вибрациями или пляской.

Как видите, все потенциальные опасности могут запросто привести к нарушению нормального электроснабжения и материальным затратам на восстановление. Также не забывайте, что любая аварийная ситуация потенциально несет угрозу человеку, как выполняющему работу в электроустановках, так и находящемуся поблизости. Поэтому для предотвращения опасных воздействий разработаны методы борьбы с вибрацией и пляской, направленные на гашение колебаний.

Методы борьбы

Условия, при которых следует применять защитные меры для гашения амплитуды вибрации, оговаривает п.2.5.85 ПУЭ. При этом учитываются такие параметры, как:

  • Длина пролета;
  • Материал проводника и его сечение;
  • Механическое напряжение в расщепленных и одиночных проводах.

Конкретные методы борьбы регламентируются методическими указаниями РД 34.20.182-90. Для гашения вибрации и пляски устанавливаются специальные устройства.

Рис. 5: пример установки гасителей вибрации

По типу и конструктивным особенностям гасители пляски и вибрации подразделяются на три типа:

  • Петлевые гасители — применяются для проводов напряжением в 6 – 10 кВ и выполняются в виде гибкой распорки. В зависимости от числа петель и конструкции распорок может быть одно- или трехпетлевым. В качестве петлевого зажима используется проволока или крепежные детали.
  • Спиральные – самые эффективные, но и самые дорогие модели для борьбы с высоко- и низкочастотной вибрацией. Из-за дороговизны их редко применяют, хотя они и дают равномерное распределение нагрузки по всей длине гасителя.
  • Мостовые – имеют специальные грузы, которым передается вибрация от раскачивающегося провода и ими же поглощается. Отличаются простотой монтажа и дальнейшего обслуживания.

В линиях от 330 до 750 кВ применяется расщепление фазы, при котором все провода соединяются распорками. Несмотря на то, что такое соединение само может выступать в роли гасителя вибрации, на практике этого не достаточно. Поэтому в главе 5 РД 34.20.182-90 приведены способы борьбы с вибрацией и пляской для различных линий и условий, в которых они могут эксплуатироваться.

Причины повреждаемости воздушных линий электропередачи

Воздушные линии электропередач

Воздушные линии электропередач предусматривают прокладку проводов и закрепление их над землей или над водой, используя специальные опоры. Провода к данным опорам (столбам) крепятся при помощи изоляторов.

Причины повреждаемости воздушных линий электропередачи.

Причины повреждаемости воздушных линий электропередачи в основном объясняются следующими факторами: перенапряжениями (атмосферными и коммутационными), изменениями температуры окружающей среды, действием ветра, гололедными образованиями на проводах, вибрацией, «пляской» проводов, загрязнением воздуха.

Приведем краткую характеристику некоторых из перечисленных факторов.

Атмосферные перенапряжения на линиях возникают из-за грозовых явлений. При таких кратковременных перенапряжениях часто возникают пробои изоляционных промежутков и в частности перекрытие изоляции, а иногда и ее разрушение или повреждение.

Перекрытие изоляции обычно сопровождается возникновением электрической дуги, которая поддерживается и после перенапряжения, т. е. при рабочем напряжении. Образование дуги означает короткое замыкание, поэтому место повреждения надо автоматически отключать. Для борьбы с атмосферными перенапряжениями используют ограничители перенапряжения ОПН.

Коммутационные (внутренние) перенапряжения возникают при включении и отключении выключателей. Действие их на изоляцию сетевых устройств аналогично действию атмосферных перенапряжений. Место перекрытия тоже надо отключать автоматически.

В сетях до 220 кВ обычно более опасны атмосферные перенапряжения. В сетях 330 кВ и выше опаснее коммутационные перенапряжения.

Изменения температуры воздуха достаточно велики, интервал может быть от —40 до +40 °С, кроме того, провод воздушной линии нагревается током и при экономически целесообразной мощности температура провода на 2—5° выше, чем воздуха.

Понижение температуры воздуха увеличивает допустимую по нагреву температуру и ток провода. Одновременно с этим при понижении температуры уменьшается длина провода, что при фиксированных точках закрепления повышает механические напряжения.

Повышение температуры проводов приводит к их отжигу и снижению механической прочности. Кроме того, при повышении температуры провода удлиняются и увеличиваются стрелы провеса. В результате могут быть нарушены габариты воздушной линии и изоляционные расстояния, т. е. снижены надежность и безопасность работы воздушной линии электропередачи.

Действие ветра приводит к появлению дополнительной горизонтальной силы, следовательно, к дополнительной механической нагрузке на провода, тросы и опоры. При этом увеличиваются тяжения проводов и тросов и механические напряжения их материала. Появляются также дополнительные изгибающие усилия на опоры. При сильных ветрах возможны случаи одновременной поломки ряда опор линии.

Гололедные образования на проводах возникают в результате попадания капель дождя и тумана, а также снега, изморози и других переохлажденных частиц. Гололедные образования приводят к появлению значительной механической нагрузки на провода, тросы и опоры в виде дополнительных вертикальных сил. Это снижает запас прочности проводов, тросов и опор линий.

На отдельных пролетах изменяются стрелы провеса проводов, провода сближаются, сокращаются изоляционные расстояния. В результате гололедных образований возникают обрывы проводов и поломки опор, сближения и схлестывания проводов с перекрытием изоляционных промежутков не только при перенапряжениях, но и при нормальном рабочем напряжении. Плавка током – наиболее распространенный способ борьбы с гололедом на проводах воздушных высоковольтных ЛЭП. Лед плавят за счет нагрева несущих или вспомогательных проводов постоянным или переменным током частотой 50 Гц до температуры в 100-130°С. Для борьбы с вибрацией используют виброгасители. Виброгасители поглощают энергию вибрирующих проводов и уменьшают амплитуду вибрации около зажимов. Виброгасители должны быть установлены на определенных расстояниях от зажимов, определяемых в зависимости от марки и напряжения провода.

Вибрация— это колебания проводов с высокой частотой (5—50 Гц), малой длиной волны (2—10 м) и незначительной амплитудой (2—3 диаметра провода). Эти колебания происходят почти постоянно и вызываются слабым ветром, из-за чего появляются завихрения потока, обтекающего поверхность провода воздуха. Из-за вибраций наступает «усталость» материала проводов и происходят разрывы отдельных проволочек около мест закрепления провода близко к зажимам, около опор. Это приводит к ослаблению сечения проводов, а иногда и к их обрыву. Для борьбы с вибрацией используют виброгасители. Виброгасители поглощают энергию вибрирующих проводов и уменьшают амплитуду вибрации около зажимов. Виброгасители должны быть установлены на определенных расстояниях от зажимов, определяемых в зависимости от марки и напряжения провода.

«Пляска» проводов — это их колебания с малой частотой (0,2—0,4 Гц), большой длиной волны (порядка одного-двух пролетов) и значительной амплитудой (0,5—5 м и более). Длительность этих колебаний, как правило, невелика, но иногда достигает нескольких суток.

Пляска проводов обычно наблюдается при сравнительно сильном ветре и гололеде, чаще на проводах больших сечений. При пляске проводов возникают большие механические усилия, действующие на провода и опоры часто вызывающие обрывы проводов, а иногда и поломку опор. При пляске проводов сокращаются изоляционные расстояния, из-за большой амплитуды колебаний в некоторых случаях провода схлестываются, из-за чего возможны перекрытия при рабочем напряжении линии. Пляска проводов наблюдается сравнительно редко, но приводит к наиболее тяжелым авариям воздушных линий электропередачи. Для борьбы с «пляской» проводов используют грузы, как гасители пляски маятникового типа.

Более подробно об этом, читайте здесь “Вибрация и пляска проводов на воздушных линиях электропередачи”.

Опасное для работы воздушных линий электропередачи загрязнение воздуха вызвано присутствием частичек золы, цементной пыли, химических соединений (солей) и т. п. Осаждение этих частиц на влажной поверхности изоляции линии и электротехнического оборудования приводит к появлению проводящих каналов и к ослаблению изоляции с возможностью ее перекрытия не только при перенапряжениях, но и при нормальном рабочем напряжении. Загрязнение из-за большого наличия солей в воздухе на побережье моря может привести к активному окислению алюминия и нарушению механической прочности проводов.

На повреждаемость воздушных линий электропередачи с деревянными опорами влияет загнивание их древесины.

На надежность работы воздушных линий влияют и некоторые другие условия их работы, например свойства грунта, что особенно важно для воздушных линий Крайнего Севера.

– 75-80 % аварийных отключений воздушных линий электропередачи связаны с грозовыми или коммутационными перенапряжениями;

– 10% из-за гололедных образований;

– 5% влияние сильного ветра;

– 4% вибрация проводов;

– 1% другие повреждения;

Кабельные линии электропередач

Кабельные линии электропередач представляют собой линии, которые предназначены для передачи отдельных импульсов электроэнергии или ее самой. Состоит такая линия из кабелей (один или несколько параллельных), соединительных, стопорных и концевых муфт, крепежных деталей. Маслонаполненные линии, кроме перечисленных составляющих, имеют еще и подпитывающие аппараты, оборудованные системой сигнализации давления масла.

Как показывает опыт эксплуатации, много недостатков кабелей не определяются при профилактических испытаниях повышенным напряжением постоянного тока. К таким недостаткам, которые значительно снижают надежность кабелей, относятся: осушение изоляции из-за перемещения или стекания пропиточного состава, электрическое старение изоляции, высыхание изоляции кабелей, работающих в тяжелых тепловых режимах, часто связанное с разложением пропиточного состава (кристаллизация) и т.д.

Не только старение, но и крупные дефекты не всегда выявляются при профилактических испытаниях. Не определяются повреждение в оболочках кабелей, если изоляция не отсырела. Повреждение и местные дефекты в изоляции могут быть обнаружены при испытании лишь в том случае, если оставшийся неповрежденный участок изоляции не превышает 15-20% ее толщины.

В момент аварии кабель часто получает вторичные повреждения (обжигается дугой, деформируется внутренним давлением, поглощает влагу через поврежденное место и т.д.).

Оболочка кабеля является одним из более важных конструктивных элементов силового кабеля. Изоляция кабеля может оставить высокие диэлектрические свойства только в том случае, если отсутствует возможность проникновения у нее воздуха или влаги.

Свинцова или алюминиевая оболочки являются герметизирующим покровом кабеля.
Длительная допустимая механическая нагрузка для свинца 0,1 кг/мм2, для алюминия 0,8 кг/мм2. В отличие от свинца алюминий является вибростойким материалом, но намного уступает ему в стойкости к действию грунтовой коррозии.

Кроме заводских дефектов, которые приводят к повреждениям кабелей имеются:

1) механические повреждения, которые были нанесены при прокладке или последующих раскопках и других строительных работах, выполняемых в зоне кабельных трасс;
2) спиралеподобные вспучины (иногда трещины) как результат длительного действия циклов нагрева и охлаждения или значительных перегрузок кабеля более допустимых норм.
3) межкристаллические разрушения свинцовой оболочки под действием сотрясений и вибраций.
4) грунтовая, химическая коррозия под воздействием разнообразных химических реагентов, которые содержатся в почве.
5) разрушение оболочек кабелей блуждающими токами электрифицированного транспорта;

Местные механические повреждения оболочек легко устанавливаются по внешнему виду, так как они сопровождаются повреждением джутовой оплетки и стальной брони. В большинстве случаев оказывается поврежденной и изоляция кабеля.

Читайте также:  Neptun ProW+Wi-Fi: обзор модуля для защиты от протечек воды

Механические повреждения носят локальный характер и после устранения поврежденного участка и монтажа вставки кабельная линия может продолжать быть в работе.

Межкристаллическое разрушение свинцовой оболочки – это рекристаллизация свинца, рост кристаллов и потеря связи между кристаллами. По внешнему виду в начальной стадии на оболочке появляется сетка мелких трещин. В последующем трещины все более увеличиваются и растрескивание оболочки сопровождается выпадением из нее групп кристаллов или даже отдельных кусков оболочки.

Масштаб межкристаллических разрушений (длина поврежденного участка кабеля) зависит от характера влияния, вызывающего сотрясения и вибрацию кабеля.

Чаще всего это вертикальный участок кабеля при переходе кабельной линии в воздушную, где сотрясения образуются проводами воздушной линии. Это могут быть участки кабелей на подходах к вращающимся машинам, создающие значительные вибрации, переходы кабельных линий под железнодорожными путями или шоссе, места прокладки кабелей по мостам, где вибрация и сотрясения создает двигающийся транспорт.

Наличие в продуктах коррозии перекиси (двуокиси) свинца указывает на ее электрическое происхождение от блуждающих токов. Характерным является цвет продуктов коррозии. Двуокись свинца, образуемая при протекании блуждающих токов имеет коричневый цвет (бурый осадок).

Продукты химической коррозии чаще всего имеют белый цвет, иногда с бледно-желтым или бледно-розовым оттенком.

При многократных изгибах кабеля, связанных из разматыванием, прокладкой, протяжкой в трубах и т.д., в местах возникших гофр алюминиевая оболочка дает продольную трещину или подрезается стальной бронелентой.
При установке муфт необходимо обращать внимание на состояние высыхания изоляции, разложения пропиточного материала и выпадения канифоли. У кабелей на напряжение 10 кВ и выше необходимо обращать внимание на электрическое старение изоляции и наличие у нее путей ионизации и частичных разрядов (ветвистые побеги, присутствие воскообразных веществ).

Воздушные включения – наиболее слабый элемент изоляции: в них начинают развиваться опасные ионизационные процессы и частичные разряды. Чем большие воздушные зазоры (особенно в радиальном направлении), тем они опаснее. В связи с этим жестко регламентировано количество допустимых совпадений бумажных лент. При большом количестве совпадений слой изоляции становится неустойчивым к выгибаниям. На бумажных лентах, расположенных под совпадающими зазорами (нижерасположенных лент), образуются продольные складки, которые под воздействием тепловых деформаций (нагревы и охлаждения кабеля) превращаются в продольные трещины, – такой же опасный дефект, как и совпадение бумажных лент.
Продольная складка нередко превращается в сплошную трещину, и при разборке изоляции кабеля вместо одной ленты сматываются две. Наиболее часто это наблюдается при величине перекрытия лент, близких до 50%.
При протекании токов короткого замыкания на очень короткое время (секунды) допускается подъем температуры жил (а, следовательно, и прилегающих слоев изоляции) к 125° или 200° соответственно для кабелей 20-35 кВ и 1-10 кВ.

Это обусловлено тем, что при температурах выше 135-140° в бумажнопропитанной изоляции быстро развиваются процессы необратимого старения бумажной основы изоляции (разрушение волокна целлюлозы, из которых состоит бумага).

Настолько же опасные и длительные аварийные перегрузки кабелей, когда нагрел жил и изоляции существенно превышает длительнодопустимые по нормам.
При вскрытии таких кабелей (после аварийного или профилактического пробоя) особенное внимание следует обращать на состояние фазной изоляции и бумажных лент, непосредственно примыкающих к жиле.

Опасные местные перегревы кабелей возможны в местах, где кабели проложены в земле с нарушением основных норм прокладки: с примыканием одного к другому или при выполнении в земле «запасов» в виде колец (запрещено правилами). В этих случаях, как установлено, кабели могут нагреваться к температурам, превышающих 100°.

В кабелях на напряжение 20-35кВ расчетные электрические градиенты приблизительно в два раза выше, чем в кабелях на 6 кВ. Потому уже при незначительном осушении, особенно на вертикальных участках, в них начинается ионизация воздушных включений и начинаются частичные разряды.

Необходимость замены вертикальных участков кабелей должна подтверждаться результатами рассечения, разборки и оглядел образцов кабелей.

Опасная степень электрического старения подтверждается наличием черных ветвистых побегов на бумажных лентах.

При обзорах токопроводящих жил кабеля необходимо обращать внимание на следующих наиболее часто встречающиеся дефекты:

– неправильную форму круглой или секторной жилы (например, один угол сектора острее, чем другой);
– выпирание или западание отдельных проволакиваний, пилообразный профиль жилы;
– наличие заусенцев на жилах.

Эти дефекты приводят к искривлению электрического поля, образованию местных повышенных напряженностей, что особенно опасно для кабелей на напряжение 10 кВ и выше. Жилы с отдельно выпирающими проволакиваниями или из заусенцами опасны в том отношении, что во время изгибов кабеля или при тепловых деформациях может быть смята, продавлена или разрезана примыкающая к жиле бумажная изоляция.

Наличие таких дефектов, значительно снижающих надежность кабеля, недопустимо.

Возможны и более грубые дефекты в жилах. Например, пересечение отдельных проволакиваний. В этом случае жила принимает неправильную форму, а в слое изоляции образуются глубокие складки. Кабели с такими дефектами не пригодны для прокладки.

При рассечении кабелей после аварийных пробоев следует учитывать ряд других изменений, связанных с горением дуги и образованием в кабеле значительных внутренних давлений.

Большим давлением может существенно деформироваться свинцовая оболочка кабеля, могут быть смещены и даже выброшены (вместе с газами) заполнители, смещенные бронеленты.
При профилактических испытаниях и пробоях, из-за малой мощности испытательных установок, такие деформации не возникают (прожигающая и ударная установки не учитываются).

Пляска проводов и мероприятия по ее ограничению.

Опасным для воздушных линий явлением, возникающим при ветре и гололеде, связанным с колебательным процессом, является пляска проводов, которая обычно возникает при сочетании порывистого ветра с гололедом при скоростях ветра 5-20 м/с и направлении под углом 30-90 о к оси линии. В отличии от вибрации пляска характеризуется малой частотой, большой амплитудой колебания и большой длиной волны. На проводах образуются стоячие волны, когда длина полуволны становится кратной длине пролета.

Пляска проводов приводит к их схлестыванию и иногда пережиганию электрической дугой, а так же к схлестыванию проводов с тросом. При пляске возникают значительные динамические усилия в линейной арматуре и в траверсах опор, наблюдаются повреждения проводов, линейной арматуры, изоляторов и самих опор. Последствия пляски проводов могут привести к выходу линии из работы на длительное время. Меры борьбы с пляской проводов могут быть направлены на ее ослабление или на уменьшение вероятности схлестывания проводов.

На основании мирового опыта (работа группы специалистов при СИГРЭ по обобщению мирового опыта, журнал «Электра» № 191, 2000 г) можно сделать следующие выводы:

· Создать способ, который гарантировал бы полное гашение и предотвращение пляски проводов при любых природных условиях воздействия ветра и гололеда невозможно.

· Создать гасители, ограничивающие пляску до безопасной величины, работающие на регулирование фазовых соотношений между крутильными и поступательными колебаниями, возможно и они оцениваются в мировой практике, как наиболее перспективные и готовые к практическому применению. Такими гасителями являются маятниковые гасители, которые нашли практическое применение в Канаде, США, Германии, Норвегии, Японии, Бельгии, Словакии, Исландии, Латвии, России и т.д. Маятниковый гаситель представляет собой груз на удлиненной консоли.

· Метод борьбы с пляской проводов за счет нарушения однородности нарастания гололеда и аэродинамической однородности за счет вращения провода и изменения его сечения по длине в настоящее время также считается наиболее перспективным и осуществляется как за счет установки грузов ограничителей закручивания провода, так и за счет, например, спиральных гасителей.

Отсюда вытекает, что можно создать ограничитель пляски проводов, работающий как груз ограничитель закручивания провода, который будет ограничивать величину гололедообразований и одновременно гасить пляску проводов.

3 Устройства по борьбе с гололедообразованием и пляской.

Ограничитель гололедообразования и колебаний типа ОГК (ограничитель) представляет собой комплексное устройство для защиты проводов и грозозащитных тросов линий электропередачи напряжением 10-220 кВ от сверхрасчетного гололеда и повреждений, вызываемых усталостью материала при вибрации и пляске, и является в настоящее время наиболее часто используемым многофункциональным устройством, обеспечивающим надежную защиту ВЛ от атмосферных воздействий (гололед и ветер) и связанных с ними явлений (вибрация и пляска).

Ограничитель выполняется в виде двух грузов, установленных на консолях гибкого элемента из 19 жильного оцинкованного тросика (рис 1) По середине элемента установлен зажим для крепления ограничителя к проводу. Грузы из круглой стали выполнены в виде полуокружности с консолями разной длины. Верхняя консоль, предназначенная для крепления гибкого элемента, короче нижней консоли. Основные геометрические размеры приведены в таблице 1.

Установка ограничителя увеличивает жесткость провода на кручение. Это необходимо для того, чтобы предотвратить закручивание провода при отложении гололеда, первоначально нарастающего с наветренной стороны. Гребешок гололеда за счет повышенной жесткости провода на кручение приобретает более вытянутую форму в сторону аэродинамического потока. Отложения такого вида, с резко выраженной эксцентричной формой, либо осыпаются по мере их роста (при положительной температуре провода), либо постепенно прекращают свой рост (при отрицательной температуре), при этом предотвращается образование массивных гололедных муфт цилиндрической формы.

Работа ограничителя в режиме гасителя пляски обеспечивается конструктивным решением его в виде маятникового гасителя пляски, в котором момент инерции за счет удлиненного рычага и масс грузов в десятки раз превышает момент инерции провода с гололедом и этим расстраивает его частотные характеристики. Эффективность работы ограничителя в режиме гасителя пляски проводов еще более увеличивается за счет смещения центра тяжести ограничителя относительно центра жесткости провода.

Работа ограничителя в режиме гасителя вибрации обеспечивается за счет использования в его конструктивном решении основных элементов гасителя Стокбриджа (гибкий элемент из тросика, грузы, зажим и т. д.) при тех же соотношениях геометрических размеров и масс. Для увеличения его эффективности в режиме работы гасителя вибрации нижние консоли грузов располагают на расстоянии не более 10-20 мм (угол между осями грузов не более 10º), что приводит их к соударению между собой и дополнительному гашению вибрации.

В целях унификации производства ограничителей предусматривается применение грузов массой 1, 3, 5 и 7 кг. Количество ограничителей, устанавливаемых в пролете ВЛ зависит от крутильной жесткости провода, длины пролета, диаметра стального сердечника и провода в целом. Для выполнения роли гасителя пляски маятникового типа ограничители необходимо устанавливать в пролете асимметрично с неравными интервалами .

Рис.1 Ограничитель гололедообразования и колебаний проводов и тросов ВЛ

4 Гасители пляски проводов типа ГПП и ГПР для ВЛ 330-500кВ.

Гаситель пляски проводов типа ГПП (рис 2) применяется на расщепленной фазе из двух проводов и устанавливается на провод в горизонтальном положении между дистанционными распорками (рис. 3). Компоновка гасителя позволяет решать вопросы по комплексной защите от атмосферных воздействий (ограничения массы гололеда и колебаний проводов) вследствии следующих конструктивных решений принятых при его конструировании:

· Ограничение массы гололеда достигается за счет увеличения крутильной жесткости провода, полученной при эксцентричном креплении гасителя к проводу.

· Гашение пляски проводов основано на сдвижке фаз крутильных и поступательных колебаний по отношению друг к другу в соседних проводах фазы и достигается за счет установки грузов на рычагах в противоположные стороны относительно продольной оси фазы (рис.3).

· Гашение вибрации достигается путем уменьшения длины пролета между распорками и грузом и работы гасителя в режиме эксцентрикового гасителя вибрации.

Гасители пляски для фазы из двух проводов выпускаются трех видов:

ГПП-2,4-13 с грузами массой 2,4 кг для установки на проводах марок АС-240, АС-300, АС-400, АС-500;

ГПП-3,2-13 с грузами массой 3,2 кг для установки на усиленных проводах марок АС-300/204, АС-500/204, АС-500/336 и обычных сечением 550-600 мм 2 ;

ГПП-4,0-13 с грузами массой 4,0 кг для проводов сечением в алюминиевой части более 630 мм 2 ;

Гасители пляски типа ГПР (рис 4) применяются на расщепленной фазе из трех проводов. Гаситель устанавливается на плашке горизонтальной распорки, по схеме приведенной на рис. 5, так, чтобы груз поочередно располагался в разные стороны от продольной оси фазы. При нечетном количестве групповых распорок гаситель пляски не устанавливается на группу распорок находящуюся в средней части пролета. На плашке груз прикрепляется болтом распорки. Гашение пляски происходит при воздействии на крутильные колебания фазы в целом, так, чтобы соседние участки провода с гасителем и распорками от вертикальных колебаний закручивались в противоположные стороны. Гашение вибрации достигается за счет дополнительной потери энергии при работе гасителя при вибрации как крутильного демпфера всей фазы.

За счет увеличения общей жесткости фазы на кручение происходит значительное уменьшение закручивания отдельных проводов фазы, что способствует снижению массы отложенного гололеда.

Гаситель пляски типа ГПР выпускается трех типов:

ГПР-2,4-13 с грузами массой 2,4 кг для установки на проводах марокАС-240, АС-300, АС-З15, АС-330; ГПР-3,2-13 с грузами массой 3,2 кг для установке на проводах марок АС-400, АС- 450 АС-500, АС-560; ГПР-4,0-13 с грузами массой 4,0 кг для установке на усиленных проводах марок АС –300/204, АС-500/204, АС- 500/336 и для обычных проводов сечением в алюминиевой части от 600мм 2 до 1200 мм 2 .

Гасители типа ГПП и ГПР могут устанавливаться на проводах при помощи автовышек, монтажных тележек, а так же при опускании провода на землю. При установке гасителя типа ГПП необходимо задавать ему опережающий угол закручивания порядка 10-15 градусов относительно продольной оси провода, с целью погашения начальных деформаций кручения от действия закручивающего момента от эксцентрикового груза гасителя.

В настоящее время выполнены следующий обьем работы:

– обобщены (обзор) опубликованных материалов (патенты и авторские свидетельства) по борьбе с явлениями пляски проводов;

– разработаны теоретической основы способа защиты расщепленной фазы ВЛ от пляски;

– подготовлены к печати 2 научные статьи

1 График выполнения и краткое описание НИРМ . 2

2 Пляска проводов и мероприятия по ее ограничению . 2

3 Устройства по борьбе с гололедообразованием и пляской. . 3

4 Гасители пляски проводов типа ГПП и ГПР для ВЛ 330-500кВ. . 4

Ссылка на основную публикацию